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bstract

Photo-reduction of Cr(VI) in a solution with single or multi-inorganic anions was evaluated. The results show that 38.5 �M Cr(VI) is photo-
educed in the presence of NO3

− at pH 1. The photolysis of NO3
−, producing NO2

− or H2O2, may contribute to Cr(VI) reduction. The addition of
.001–0.1 M chlorite to NO3

− enhanced Cr(VI) photo-reduction when 35.8 �M Fe(III) was present. This enhancement was the combinative result
f photolysis of NO − and Fe–Cl complexes, leading to the formation of NO − and Fe(II), respectively, for Cr(VI) reduction. On the contrary,
3 2

significant decrease in Cr(VI) photo-reduction was observed with the addition of PO4
3− and SO4

2−. This decrease was due to their strong
ompetition with Fe(III) from Cl−, resulting in a marked decrease in the concentrations of Fe–Cl complexes. The results suggest that a direct
rradiation of acidic wastewaters containing Cl−, NO3

−, and Fe(III) is a feasible strategy for eliminating Cr(VI).
2007 Elsevier B.V. All rights reserved.
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. Introduction

Chromium is commonly found as a contaminant in water and
oil as a result of extensive use in industry. Chromium exists in
wo major oxidation states: Cr(III) and Cr(VI). An interchange
f these two Cr species can occur, depending on the redox poten-
ial and the pH of the medium. Chromium(III) occurs naturally;
dietary supplement of 50–200 �g of Cr(III) per day is recom-
ended for people with adult-onset diabetes or insulin resistance

1,2]. Trivalent Cr is readily hydrolyzed in solution at pH val-
es above 5.5, leading to the formation of chromium hydroxide
ons such as Cr(OH)2+ and Cr(OH)2

+. Trivalent forms of Cr ions
arry a positive charge and are readily adsorbed on negatively
harged soil particles; thus, Cr(III) is not very mobile in soil [3].

y contrast, Cr(VI) is generally produced by industrial activities
nd is commonly found at contaminated sites. Chromium(VI) is
f interest to scientists because of its high toxicity to both plants

∗ Corresponding author. Tel.: +886 4 2284 0373x4206; fax: +886 4 2285 5167.
E-mail address: ymtzou@dragon.nchu.edu.tw (Y.-M. Tzou).
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4] and animals [5] as well as its carcinogenicity to humans [6].
ue to electrical repulsion, the anionic type of Cr(VI) is barely

etained by negatively charged clay minerals in soils. This prop-
rty expedites its mobility in the soil profile and can potentially
epresent a detrimental impact on groundwater. Therefore, direct
emoval of Cr(VI) from contaminated sites for further treatment
r the conversion of Cr(VI) to Cr(III) on-site is the alternatives
or attenuating Cr toxicity to the ecosystem.

The separation or extraction of Cr(VI) from Cr(VI)-
ontaminated soils and sediments with a fine texture or passive
tructure can be an incomplete or a long-term process, and the
ost of Cr(VI) removal from these sites can be high. On the other
and, the addition of some reductants, such as Fe(II), dithionite,
nd H2S, FeSx [7–11], into the Cr(VI)-contaminated medium
ollowed by immobilizing the redox products on-site is consid-
red to be a feasible strategy for eliminating Cr(VI). However,
his technique usually leads to the accumulation of redox by-

roducts as coating materials or discrete solids in soil pores,
esulting in a decrease of aeration or water movement in the soil
rofile. In addition, these by-products are amorphous and have
arge surface areas, which may serve as new adsorption sites

mailto:ymtzou@dragon.nchu.edu.tw
dx.doi.org/10.1016/j.jhazmat.2007.12.028
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or non-reducible Cr(VI) or other toxic contaminants [12]. As a
esult, the integral function of an ecosystem can be significantly
poiled by the addition of a great number of reductants. There-
ore, the development of a clean and efficient technique is still
ecessary because none of the above-mentioned techniques has
chieved much success for remediating Cr(VI)-contaminated
ites.

Unlike inorganic reductants, naturally occurring organic
ompounds have been recognized as benign reductants of Cr(VI)
n an acid medium. Nonetheless, the results of previous stud-
es suggest that the rate of Cr(VI) reduction by organics was
elatively low in the pH range of 4–8 [13,14]. To accelerate
he reduction of Cr(VI) by organics, ultraviolet/visible light,
ncluding sunlight, has been applied in laboratory-scale studies
n attempts to overcome the energy barrier for Cr(VI) reduc-
ion [15,16]. In addition, it has been suggested that the presence
f ferric ions may expedite Cr(VI) photo-reduction by organics
ue to the enhancement of electron transfer between Cr(VI) and
rganics through the Fe(III)/Fe(II) redox couple [17,18]. Unfor-
unately, light-induced Cr transformation is not always beneficial
or Cr(VI) reduction. Zhang and Bartlett [19] proposed that light
ould induce Cr(III) oxidization in an organic-free solution with
e(III) and suggested an optimal pH range of 3.2–4.4 for the
eaction, and they proposed that the photolysis of Fe(OH)2+,
eading to OH radical formation, was responsible for Cr(III)
xidation. Thus, other than Mn hydr(o)oxides, Fe(III)-induced
r(III) photo-oxidation provides an alternative for the con-
ersion of Cr(III) to toxic Cr(VI). Accordingly, the results
f these studies suggested that the species interacted with
e(III) would influence Cr abiotic transformation under illu-
ination.

In preliminary studies, we found that the presence of

e(III) and inorganic anions had a strong effect on Cr photo-
ransformation. For instance, Fe(OH)2+ facilitated Cr(III) oxi-
ation, but a tendency to increase on Cr(VI) photo-reduction

d
p

ig. 1. Schematic illustration of the setup of the photolytic reactor consisting of a c
yringe for extracting sample solution.
s Materials 156 (2008) 374–380 375

as observed in the presence of FeCl2+. Furthermore, Fe(III)
xhibited a very limited effect on Cr(VI) photo-reduction when
ndifferent electrolytes such as NO3

− were present. Wastew-
ters, particularly from electroplating industries, may contain
ifferent kinds of anions and cations, including Cr(VI) and
e(III). The influence of anions on Cr(VI) photo-reduction in the
resence of Fe(III) needs to be evaluated if the photo-catalytic
echnique is selected for treating Cr(VI)-containing wastewa-
ers. That is, the elucidation of the details of Cr transformation
s influenced by anions and Fe(III) may be helpful to enhance
he efficiency of a photo-involved technique.

The work seeks to obtain a better understanding of the trans-
ormation and transportation of Cr once it is released into the
nvironment under sunlight. The objectives of this study are to
nvestigate the kinetic results of Cr transformation in a solution
ith single or mixed anions in the presence of Fe(III); clarify

he details of the reaction mechanism; and evaluate the poten-
ial use of a photo-catalytic technique to treat Cr(VI)-containing
astewater with multiple anions and Fe(III).

. Materials and methods

.1. Reagents

The chemicals and reagents used in this work were all of
nalytical grade. All solutions were prepared with 18 M� Mil-
ipore water. All glassware was cleaned with 6 M HCl, followed
y thorough rinsing with 18 M� Millipore water.

.2. The reactor
Each photo-catalytic experiment was conducted in a 500 mL,
ouble-walled water-jacketed reactor. A 100 W, medium-
ressure mercury UV lamp in a quartz well was placed in the

entered UV lamp, a close-loop waterbath, and a plastic tube connecting to a
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3NO2
− + 2HCrO4

− + 8H+ → 2Cr3+ + 3NO3
− + 5H2O,

E◦ = 0.37 V (2)
76 Y.-M. Tzou et al. / Journal of Haz

enter of the reactor (Fig. 1). The well and the reactor were con-
ected to a circulating waterbath to maintain the temperature at
4.5 (±0.5) ◦C; this temperature is suggested by the manufac-
urer (ACE Glass Incorporation) for lamp ignition. To obtain a
table emission, the UV lamp was switched on at least 20 min
efore conducting the photo-experiments. The reactor was cov-
red with Al foil and placed inside a stainless steel chamber
hroughout the experiments to avoid any possible interference
y natural or artificial light. One end of the plastic tube was
nserted into the reactor with the other end connected to a syringe
o extract the sample solution (Fig. 1). The tube was pumped
nd purged several times before sample collection and emptied
efore the next run.

.3. Photo-reduction of Cr(VI)

Stock solutions of 100 mg L−1 Cr(VI) and 50 mg L−1 Fe(III)
ere prepared by dissolving K2Cr2O7 and Fe(NO)3, respec-

ively, in 0.1 M HNO3. The photo-catalytic reaction of 38.5 �M
r(VI) was investigated by adding appropriate amounts of stock

olutions to 0.1 M HNO3 (i.e. at pH 1) with and without 35.8 �M
e(III). No buffer was needed to maintain a constant pH, since

he change of pH was insignificant (<0.02 pH unit) during the
xperiments. A 5 mL aliquot was withdrawn before each run for
etermining the initial concentration of Cr(VI) or Fe(III). After
he photo-catalytic experiment began, 5 mL samples of solution
ere withdrawn from the reactor periodically, and the concentra-

ions of Cr(VI) were measured by the diphenycarbazide (DPC)
ethod [20]. Control experiments were conducted using the

ame experimental settings but without UV light.
In another set of experiments, the influence of 0.001–0.1 M

l− (as KCl) on photo-reduction of 38.5 �M Cr(VI) was first
valuated in 0.1 M HNO3 with 35.8 �M Fe(III). Then, 100 mM
nionic ligands (KH2PO4 and K2SO4) or indifferent anions
KClO4) were added to the solution with 10 mM Cl−, 38.5 �M
r(VI), and 35.8 �M Fe(III) in 0.1 M HNO3. The influence of

he competition among the anions to Fe(III) on Cr(VI) photo-
eduction was investigated. The remaining procedures, such as
ample extraction and measurement, were conducted as previ-
usly described.

.4. The reduction of Cr(VI) by NO2
−

Our preliminary experiments showed that Cr(VI) was photo-
educed in the presence of NO3

− even when Fe(III) was absent.
e attributed this to photolysis of NO3

−, leading to the produc-
ion of NO2

−, which served as a reductant for Cr(VI) reduction.
o confirm this reaction, 0.5 mM NO2

− (as KNO2) was added to
6.2 �M Cr(VI) in 0.1 M HNO3. Since NO2

− affects the mea-
urement of Cr(VI) by the DPC method [21], each extracted
ample was transferred directly to a 1 cm path-length optical cell,
nd wavelength scans were conducted from 200 to 600 nm. The

hanges of intensity of the Cr(VI) absorption peak at ∼350 nm
ere recorded and plotted as a function of irradiation time

15,22] to obtain a qualitative result for Cr(VI) reduction by
O2

−.
F
a

s Materials 156 (2008) 374–380

.5. Analytical methods

Concentrations of Cr(VI) were determined by the DPC
ethod, measuring absorbance at 540 nm except in the presence

f NO2
− [21]. Although the potential interference of Fe(III) in

he DPC method has been proposed [21], the variation in the
tandard solutions of Cr(VI) before and after the addition of
5.8 �M Fe was found to be less than ±1%. Thus, the inter-
erence of Fe(III) in the Cr(VI) measurement was ignored. The
oncentrations of Fe(II) and Fe(III) were determined using the
,10-phenanthroline method measuring absorbance at 510 nm
ith a Cary 50 UV–vis spectrophotometer. Ferrous ions were
etermined by reaction with 1,10-phenanthroline in the absence
f hydroxylamine. Because 1,10-phenanthroline cannot form a
omplex with Fe(III), hydroxylamine was added to the samples
o reduce Fe(III) to Fe(II) in order to obtain the total concen-
ration of Fe. The concentration of Fe(III) was determined by
ubtracting the concentration of Fe(II) from the corresponding
otal concentration of Fe.

. Results and discussion

.1. Cr(VI) photo-reduction in 0.1 M NO3
− solution

As shown in Fig. 2, no significant decrease in the concen-
ration of Cr(VI) with a prolonged reaction time was observed
n the absence of light. In contrast, 38.5 �M Cr(VI) was rapidly
educed when exposed to light. The reaction followed zero-order
inetics with a rate constant of 0.099 �M min−1. The photolysis
f NO3

− to NO2
− [23,24] as indicated in reaction (1) may be

esponsible for Cr(VI) reduction because of the positive value
f the redox potential in reaction (2) [25].

O3
− + hv → NO2

− + 1
2 O2 (1)
ig. 2. The photo-reduction of 38.5 �M Cr(VI) in the presence of 0.1 M NO3
−

t pH 1 with or without 35.8 �M Fe(III).
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Because the photolytic product of NO2
− was consumed

apidly by Cr(VI), the measurement of NO2
− and the stoichio-

etric evaluation of reaction (2) was not possible. To provide
direct experiment evidence of reaction (2), 0.5 mM NO2

−
as added to 38.5 �M Cr(VI) in 0.1 M NO3

−. The reduction
f Cr(VI) by NO2

− was examined through observation of the
hanges in the absorbance at ∼350 nm because of the interfer-
nce of NO2

− with color development using the DPC method
21]. Cr(VI) has a strong UV/visible spectrum with a very large
olar absorption coefficient (ε) of 1550 M−1 cm−1 at 350 nm

26]. Nonetheless, the absorption spectra of NO2
− contain a rel-

tively weak n → �* band at 360 nm (ε = 22.5 M−1 cm−1) [27].
herefore, upon the reduction of Cr(VI) by NO2

−, the decrease
n absorbance at ∼350 nm results predominantly from a decrease
n the concentration of Cr(VI), indicating Cr(VI) reduction.
Fig. 3a shows a decrease in the intensity of the spectra
easured at ∼350 nm with a prolonged reaction time. Cr(VI)

eduction by NO2
− was not readily observed from the spectra

ecause NO3
− formation through reaction (2) may be greatly

ig. 3. The decrease in the intensity of spectra measured at ∼350 nm with
.5 mM NO2

− and 96.2 �M Cr(VI) (a) in 0.1 M NO3
− with a prolonged reaction

ime and (b) in 0.1 M NO3
− or 0.1 M Cl− after 180 min at pH 1.
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nhibited in the presence of 0.1 M NO3
−. However, a signifi-

ant decrease in absorbance at 350 nm was observed after 3 h
f reaction when 0.1 M Cl− replaced NO3

− as the electrolyte
Fig. 3b). These results demonstrate clearly that Cr(VI) reduc-
ion by NO2

− resulting from the photolysis of NO3
− is a possible

athway for detoxifying Cr(VI) in solution.
Although NO2

− is capable of reducing Cr(VI) in the dark,
r(VI) disappears more rapidly when the NO2

−-containing
olution is exposed to light (Fig. 4). The photolysis of NO2

−
reactions (3)–(6)) [27] results in the formation of H2O2 (reac-
ion (7)) [19,28], which may lead to rapid reduction of Cr(VI)
reaction (8)) [29]. The pathways are given below:

O2
−hv−→ [NO2]∗ (3)

NO2
−]∗ → NO• + O•− (4)

O• + NO• → N2O2 + O2 → N2O4 (5)

•− + H2O → •OH + OH− (6)

OH + •OH → H2O2 (7)

HCrO4
− + 3H2O2 + 8H+ → 2Cr3+ + 3O2 + 8H2O (8)

he influence of Fe(III) on Cr(VI) photo-reduction in 0.1 M
O3

− solution was shown in Fig. 2. Cr(VI) photo-reduction
ollowed zero-order kinetics upon the addition of 35.8 �M
e(III), with a slight increase of reaction rate from 0.099 to
.121 �M min−1. This might be the result of the production
f Fe(II) (∼1.06 �M measured in the absence of Cr(VI) at
80 min), resulting from the photolysis of H2O (reaction (9)).
n addition, we found that less than 1.5 �M Fe(II) could be
roduced after irradiation for 3 h, even when 179.1 �M Fe(III)

as added initially. Therefore, it is clear that Fe(III) influences

lightly Cr(VI) photo-reduction in the presence of NO3
−, prob-

bly due to the lack of a strong interaction between Fe(III) and
O3

−. Although the reduction of Cr(VI) by Fe(II) was rapid at

ig. 4. Comparison of the decrease in intensity of the spectra at ∼350 nm mea-
ured in the dark or under light in a solution with 0.5 mM NO2

− and 96.2 �M
r(VI).



378 Y.-M. Tzou et al. / Journal of Hazardou

Fig. 5. (a) Photo-reduction of 38.5 �M Cr(VI) with the addition of 0.001–0.1 M
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l− in the presence of 35.8 �M Fe(III) and 0.1 M NO3
− at pH 1 and (b) influence

f Cl− concentration on the kinetic formation of Fe(II) measured in the absence
f Cr(VI) with 0.1 M NO3

− at pH 1.

cidic pH, the redox reaction does not significantly contribute
o Cr(VI) reduction due to a low Fe(II) production rate through
eaction (9).

H2O + 4Fe3+ hv−→O2(g) + 4H+ + 4Fe2+ (9)

.2. Effects of Cl− on Cr(VI) photo-reduction in the

resence of 0.1 M NO3

− and Fe(III)

Fig. 5 shows that Cr(VI) photo-reduction was greatly
nhanced when Cl− was added to a solution with Fe(III) and

F

e

able 1
he influences of inorganic anions on the zero-order kinetic constants of photo-reduc

nions [Cl−](mM) 10 mM [Cl−]

0 1 10 100 Controla 100 m

(�M min−1) 0.12 0.17 0.31 0.44 0.31 0.14
2 1.00 1.00 1.00 1.00 1.00 0.96

a No extra anions addition.
s Materials 156 (2008) 374–380

O3
−. The rate of Cr(VI) photo-reduction increased with the

ncrease in initial concentration of Cl− from 0.001 to 0.1 M.
or example, 38.5 �M Cr(VI) was reduced completely within
0 min with 0.1 M Cl−; however, more than 15 �M Cr(VI) was
till present in the solution after 180 min with 0.001 M Cl−
Fig. 5a). The results demonstrate that the addition of Cl− pro-
oted the overall photo-reduction of Cr(VI). The results are

onsistent with our previous works with the addition of various
oncentrations of Fe(III) [27]. In addition, we found no observ-
ble change of Cr(VI) concentration when Cl− was added to a
olution of NO3

− in the absence of Fe(III). Therefore, we spec-
lated that the rapid disappearance of Cr(VI) upon the addition
f Cl− might be due to the formation of Fe–Cl complexes when
e(III) is present. Upon the photolysis of FeCl2+ (reaction (10)),
e2+ and Cl2•− were produced rapidly at acidic pH (reaction
11)) [30]. Consequently, Cr(VI) was reduced rapidly by Fe2+

reaction (12)). The Cl2•− forms molecular chlorine or reacts
ith Fe(II) back to Cl− (reaction (14), see below).

Fe(OH2)5Cl]2+ + H2O hv−→ [Fe(OH2)6]2+ + Cl• (10)

l• + Cl− → Cl2•− (11)

Fe2+ + HCrO4
− + 7H+ → Cr3+ + 3Fe3+ + 4H2O (12)

eaction (10) suggests that Fe(II) formation results from the
hotolysis of Fe–Cl complexes; thus, raising the concentrations
f the Fe–Cl complexes enhances the formation of Fe(II) and the
ubsequent photo-reduction of Cr(VI). With an increase in ini-
ial concentration of Cl− from 0.001 to 0.1 M, calculation of the
istribution of Fe species using the MINTEQA2 program [31]
uggested a corresponding increase in the percentage of Fe–Cl
omplexes from 0.62 to 35.2. The rate of Cr(VI) photo-reduction
as greatly enhanced (Fig. 5a, Table 1) due to the significant

ncrease in Fe–Cl complexes with increasing concentrations of
l−, leading to the production of more Fe(II) ions (Fig. 5b).
onetheless, the amount of Fe(II) formed was not correlated

toichiometrically to that of Cr(VI) reduction because the mea-
urement of Fe(II) was conducted in the absence of Cr(VI). Even
f the rate of Cr(VI) photo-reduction increased with increasing
oncentrations of Cl− (Table 1), the photo-reduction of Cr(VI)
till followed zero-order kinetics, indicating that the reaction
echanism does not depend on the concentration of Cl−.

.3. Effect of other anions on Cr(VI) photo-reduction with

e–Cl complexes in 0.1 M NO3

−

Previous results indicated that Fe–Cl complexes would
nhance Cr(VI) photo-reduction in 0.1 M NO3

−. However,

tion of 38.5 �M Cr(VI) in the presence of 0.1 M NO3
− and 35.8 �M Fe(III)

M PO4
3− 100 mM SO4

2− 100 mM ClO4
− 100 mM NO3

−

0.21 0.34 0.34
0.99 1.00 1.00
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Fig. 6. (a) Photo-reduction of 38.5 �M Cr(VI) with the addition of various
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nions at a final concentration of 100 mM to a solution with 10 mM Cl−, 35.8 �M
e(III), and 0.1 M NO3

− at pH 1, and (b) the kinetic formation of Fe(II) in the
resence of various anions at pH 1.

e–Cl complexes are not stable, and some complexation ligands
ay replace Cl− through ligand exchange, influencing Cr(VI)

hoto-reduction indirectly. Therefore, 100 mM PO4
3−, SO4

2−,
r ClO4

− was added to 10 mM Cl−, 35.8 �M Fe, 0.1 M NO3
− to

urther investigate whether Cr(VI) photo-reduction was affected
y the presence of these specific anions. These anions were
elected because they have different abilities to form complexes
ith Fe(III). For example, the stability constants as logarithmic

orms for PO4
3− and SO4

2− with Fe(III) are 22.5 and 4.0, respec-
ively; however, ClO4

− complexes only weakly with Fe(III) in
olution [32]. Thus, upon the addition of these anions, Cr(VI)
hoto-reduction may be affected due to their different com-
etitive abilities with Fe(III), leading to the re-distribution of
hoto-activated Fe species, such as Fe–Cl complexes. The influ-
nce of anions on Cr(VI) photo-reduction is shown in Fig. 6a
nd Table 1.
As compared with the control experiment, the addition of
00 mM ClO4

− or NO3
− increased Cr(VI) photo-reduction

lightly, corresponding to an increase in the zero-order reaction
ate from 0.31 to 0.34 �M min−1 (Table 1). A slight increase

e
N
H

s Materials 156 (2008) 374–380 379

n Fe(II) formation and photolytic reaction in the presence
f ClO4

− and NO3
−, respectively, may explain the results

data not shown). In contrast, a significant decrease in Cr(VI)
hoto-reduction was observed with the addition of 100 mM
O4

3− or SO4
2− (Fig. 6a). The decrease in Cr(VI) photo-

eduction upon the addition of PO4
3− or SO4

2− was due to
heir strong competition with Fe(III) from Cl−, resulting in a

arked decrease in the concentrations of Fe–Cl complexes. For
xample, with the addition of PO4

3− and SO4
2−, the FeCl2+

omplexes decreased from 2.08 to 0.057 �M and 0.151 �M,
espectively. As previously mentioned, the Fe–Cl complex was a
hoto-activated species; nonetheless, there was no evidence that
e–PO4 could be photolyzed, producing Fe(II) or reducible rad-

cals for Cr(VI) reduction. Therefore, the decrease of Cr(VI)
hoto-reduction upon the addition of PO4

3− was due to the
ecrease in the concentrations of Fe–Cl complexes and subse-
uent photolytic reactions. In addition, according to calculations
ith MINTEQA2, PO4

3− forms a precipitate with Fe(III), which
ay partially explain, the decrease in Cr(VI) photo-reduction

nd the slight deviation from a zero-order reaction (Table 1).
With the addition of 100 mM SO4

2−, Fe-SO4
+ becomes

he major species in solution (∼84.3% of total 35.8 �M Fe).
lthough photolysis of the Fe–SO4

+ complex may also produce
e(II), as shown in reaction (13) [33,34], the rate of Fe–SO4

+

hotolysis may be slower than that of Fe–Cl (reaction (10)).
herefore, the overall Cr(VI) photo-reduction decreased with

he addition of SO4
2−. In addition, Fe(H2O)6

2+ reacts rapidly
ith Cl2•− and SO4

•− radicals back to Fe(III), as shown in
eactions (14) [30] and (15) [34]. Because the rate of oxidation
f Fe(II) by Cl2•− is lower than that by SO4

•−, Fe(II) obtained
rom the photolysis of the Fe–Cl complex may last longer for
r(VI) reduction.

e(H2O)5SO4
+hv−→ Fe(H2O)6

2+ + SO4
•− (13)

Fe(H2O)6
2+ + Cl2•− → Fe(H2O)6

3+ + 2Cl−,

κ = 1.4 × 107 M−1 s−1 (14)

Fe(H2O)6
2+ + SO4

•− → Fe(H2O)6
3+ + SO4

2−,

κ = 1.0 × 108 × M−1 s−1 (15)

hus, in the absence of Cr(VI), we observed that the amount
f Fe(II) resulting from the photolysis of Fe–Cl was greater
han Fe(II) resulting from the photolysis of Fe–SO4

+ (Fig. 6b).
ccordingly, due to the decrease in Fe–Cl complexes upon the

ddition of 100 mM SO4
2−, the overall efficiency of Fe(II) pro-

uction was decreased, which resulted indirectly in a low level
f Cr(VI) photo-reduction.

. Conclusions
This study shows that Cr(VI) can be reduced in the pres-
nce of NO3

− at acidic pH under irradiation. Photolysis of
O3

−, leading to the production of intermediates (NO2
− and

2O2) may contribute to rapid reduction of Cr(VI). The addition
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f ferric ions to a solution with an indifferent electrolyte such as
O3

− did not influence the photo-reduction of Cr(VI). Nonethe-
ess, when Cl− was present in the solution, a significant increase
n Cr(VI) photo-reduction was observed. The increase in Cr(VI)
hoto-reduction was attributed to the formation and subsequent
hotolysis of Fe–Cl complexes, producing Fe(II) for Cr(VI)
eduction. On the contrary, the addition of PO4

3− to a solution
ontaining Fe–Cl complexes inhibit Cr(VI) photo-reduction.
he result is likely due to strong competition between Fe(III)
nd Cl, leading to a decrease in the concentration of Fe–Cl com-
lexes. Although the addition of SO4

2− decreased the rate of
r(VI) reduction, its influence was lower, because the photolysis
f Fe–SO4

+ may also produce Fe(II) for Cr(VI) reduction.
The results of this study indicate that the direct exposure

o light of acidic electroplating wastewater containing Fe(III)
nd other anions is a potential strategy for eliminating toxic
r(VI) from solution. However, different anions exhibit differ-
nt abilities to form complexes with Fe(III); these complexes
ave various photo-activities. Therefore, the influence of anions
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